如何快速求特征值?
具体如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值。
特征值是线性代数中的一个重要概念,在数学、物理学、化学、计算机等领域有着广泛的应用。
相关信息:
如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν。
其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。
特征值怎么求
求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组:
的一个基础解系,则的属于特征值的全部特征向量是其中是不全为零的任意实数。
若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
扩展资料
求特征向量
设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。
判断相似矩阵的必要条件
设有n阶矩阵A和B,若A和B相似(A∽B),则有:
1、A的特征值与B的特征值相同——λ(A)=λ(B),特别地,λ(A)=λ(Λ),Λ为A的对角矩阵;
2、A的特征多项式与B的特征多项式相同——|λE-A|=|λE-B|。
参考资料来源:百度百科-特征值
特征值的求法是什么?
矩阵特征值的求法是写出特征方程lλE-Al=0左边解出含有λ的特征多项式比如说是含有λ的2次多项式,我们学过,是可能没有实数解的,(Δ<0)这个时候我们说这个矩阵没有【实特征值】但是如果考虑比如Δ<0时有虚数的解,,也就是有虚数的特征值的这样说来就必有特征值。
设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
首先求出方程|λE-A|=0的解,这些解就是A的特征值,再将其分别代入方程(λE-A)X=0中,求得它们所对应的基础解系,则对于某一个λ,以它所对应的基础解系为基形成的线性空间中的任意一个向量,均为λ所对应的特征向量。
若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值.由以上讨论可知,对于方阵的每一个特征值,我们都可以求出其全部的特征向量。
特征值的计算方法
设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。
扩展资料
判断相似矩阵的必要条件
设有n阶矩阵A和B,若A和B相似(A∽B),则有:
1、A的特征值与B的特征值相同——λ(A)=λ(B),特别地,λ(A)=λ(Λ),Λ为A的对角矩阵;
2、A的特征多项式与B的特征多项式相同——|λE-A|=|λE-B|;
3、A的迹等于B的迹——trA=trB/ ,其中i=1,2,…n(即主对角线上元素的和);
4、A的行列式值等于B的行列式值——|A|=|B|;
5、A的秩等于B的秩——r(A)=r(B)。[1]
因而A与B的特征值是否相同是判断A与B是否相似的根本依据。