非金属矿产资源的保护与可持续发展
非金属矿产是人类开发利用最早的矿产,而且具有一矿多用、多矿同用的特点,其保温、耐磨、绝缘、吸音、隔热、防潮、耐高温、抗震、抗腐蚀、粘性、可塑性、高强度、轻质等性能是金属材料不可取代的。因此,化工、医药、建筑、造纸、塑料、电讯、汽车、航天等部门广泛应用非金属矿产,其加工链条远远长于金属矿产。随着科学技术的不断进步,非金属矿产加工链条越来越长,其价值也越来越高。目前世界上非金属矿年开采量高达250亿t,占世界矿石年开采量的70%以上,并且向高附加值的深加工、精加工方向的发展速度也越来越快。非金属矿产的开发利用程度已成为衡量一个国家科学技术水平和工业化程度的重要标志之一。一些发达国家非金属矿产值已远远高于金属矿产值。
近年来我国非金属矿的开发利用有了长足发展,河南是非金属矿产资源丰富的地区,开发利用也在每年进步,但仍然以销售原矿和粗加工为主,资源利用率低,浪费资源的问题比较严重。对环境的破坏也已引起了重视。加强矿产资源的综合利用和保护已势在必行。
一、非金属矿产资源的保护
河南省非金属矿产资源由于科技水平问题,或是设备、管理问题,开发利用程度不高。而由于法制和管理工作还不完善,使一些资源被浪费和破坏。因此,必须对全省的非金属矿产资源做出总体规划,在规划的基础上依法管理,保护好矿产资源。
1.非金属矿产资源规划
(1)完善法制、法规,明确矿产资源规划的法律地位。2000年国务院国土资源部出台了矿产资源规划管理办法,为我国矿产资源规划提出了规范性文件,在国务院矿产资源法实施细则修改中,应对相应条款进行修改,使矿产资源规划的编制、审批程序规范化,明确矿产资源规划是设置矿业权的前提条件,河南省也应在国家法律、法规的基础上进一步对河南省矿产资源规划的编制、审批、管理提出系统的方案。
(2)河南省应在全国矿产资源规划的基础上,按法律、法规的要求,制定河南省的矿产资源规划。非金属矿产方面,要对建筑材料非金属矿产,如水泥灰岩、花岗石、大理石饰面材料矿产、珍珠岩等提出规划意见,对冶金辅料矿产,如耐火粘土、蓝晶石类矿物矿产、石墨等提出规划意见,对化工和其他矿产,如独山玉、膨润土、金红石、化工灰岩、重晶石等提出规划意见。
(3)各地区应根据非金属矿产赋存和开发应用情况,提出地区性规划,如信阳市应搞好火山岩系列(膨润土、沸石、珍珠岩等)非金属矿产区的规划,南阳搞好蓝晶石、红柱石、夕线石、金红石的矿产地的规划,豫西、豫北各市应对灰岩、耐火粘土等矿产搞好规划。
2.加强法制建设,维护矿业秩序,确保合理利用和保护矿产资源
(1)在有关矿产资源规划的立法中,明确规划在矿业设置程序中的法律地位,矿业权的设置必须服从规划的指导,违背规划而设置的矿业权应该可以被撤销。
(2)各级政府应加强执法力度,坚决取缔无证开采,下决心整顿好那些长期存在矿业秩序问题的矿区。只有矿业秩序根本好转,才能确保规划的实施和资源得到保护。
二、坚持可持续发展战略,树立环保意识,把矿业开发和生态环境保护紧密结合起来
1.保护自然景观,防止开采矿产资源造成的灾害和环境的污染
(1)河南省非金属矿产开发比较普遍,尤其是石灰岩作为水泥灰岩、熔剂灰岩及其他建筑材料的开采范围很广,大部分都不同程度对自然景观起着破坏作用。一些作为旅游景点的地区,如查岈山、云台山等常常是由质量很好的建筑材料花岗岩、石灰岩形成的地貌景观,一些可观赏的洞穴常常是石灰岩地区的喀斯特溶洞。因此,与旅游管理部门,环境保护部门共同规划管理好这些旅游资源,使优美的自然景观不被破坏是一项重要的任务。
(2)开采矿产资源的过程如果处理不当会引发一系列灾害。如地下开采造成地面塌陷,地表开采不合理,造成开采面崩塌,废渣、废石堆放不当发生滚落或雨季造成泥石流,尾矿储存不当也可因大雨冲破尾矿坝形成泥石流,这些问题在河南省历年来都有发生。因此,必须坚持矿山建设前要有经过批准的开采设计,确定科学合理的开采方案及废石废渣和尾矿的处理。
(3)建立矿山企业边开采边恢复地形地貌和复垦的制度,对矿山企业复垦的要求,在矿产资源法律、法规中都有规定,但是缺乏行之有效的可操作的制度办法,再加上矿山企业大部分效益不高,实行比较困难。因此,国土资源管理部门应加强这项制度的建设,促成这项工作有效地开展起来。
(4)非金属矿产的采选加工对环境的污染有空气和水、水泥生产、耐火粘土矿煅烧,一些非金属矿的粉碎磨细都会造成粉尘和有害气体对空气的污染。矿石采选的废水也会污染地表水和地下水,如石墨选厂废水的污染相当严重。尽管现在全民的环保意识大大增强,矿山设计中环保措施也都有专门阐述,但由于技术水平不高,治理措施不力,常常不尽如人意,加强管理,提高技术水平,消除污染是今后面临的重要任务。
2.二次资源的利用
自然资源包括环境资源、矿产资源和生物资源等,统称为一次资源。
人类生产和生活所排放丢弃的大量废弃物包括废水、废气和固体废物被称为废物。废物并非无用,而是暂时不用,人类完全有能力将这些废物变成新的资源,这些可供人类二次利用的“三废”物质,统称为二次资源。
1)废石与尾矿的利用
矿山开采过程中剥离及掘进时产生的无工业价值的矿床围岩和岩石称为废石,选矿产出精矿后剩余的废渣成为尾矿。废石和尾矿是矿石采选中产生的固体废弃物。由于不同矿产其围岩及矿石组成不同,其废石和尾矿的成分不同,开发利用方向也不一样,一般来说有下面几个方面。
(1)提高技术水平和管理水平,以此提高采矿回采率,选矿回收率、降低贫化率,在选矿中根据尾矿成分,研究综合回选工艺。
(2)做井下填充料,尾矿和废渣用水泥胶结可做井下采空区的填充料,也可做铺路材料和填坑材料。
(3)做非金属矿利用,许多废石和尾矿中含多种非金属矿物,如硅石、石英、长石及各类粘土或高岭土、白云石或石灰石、蛇纹石等,都可以加以利用。原地矿部综合所就研究出用钾长石尾矿生产性能优于天然花岗岩的微晶玻璃花岗岩产品。
(4)做建筑材料,如制尾矿砖或制作尾矿砂加气混凝土。尾矿砖是以尾矿砂为主要原料(配比65%~67%),以粉煤灰(15%~20%)、磨细石灰(8%~12%)、石膏(3%)为激发剂,经搅拌、轮碾、成型、蒸汽养护而制成的一种墙体材料。其性能见表4-2-1。
表4-2-1
尾矿砂加气混凝土是以水泥(16%~18%)、水渣粉(32%~34%)、尾矿砂(48%~52%)为原料,与加气剂按比例配制而成的一种轻质多孔建筑材料。
生产工艺过程为原材料加工制备→配料浇注→坯体静停和切割→蒸汽养护→制品出釜。混凝土具有容量轻、保温性能好等优点,其性能见表4-2-2,可用做一般工业和民用建筑的围护结构和间隔墙。
表4-2-2 加气混凝土性能
2)矿山废水的治理与利用
(1)废水的分类。废水的成分非常复杂,性质千差万别。每种废水都是多种杂质和若干项污染物指标的综合体,往往以其中起主导作用的一两项污染因素进行描述和分类。由于污染物的来源、产生的方式、特性和形态的不同,分类的方法也不相同。
河南省非金属矿采选加工过程中产生的废水,可按污染程度分为两类。
第一类:矿山工业废水,包括采矿、选矿生产废水和洁净废水。生产废水是直接从生产过程中排放出的废水,水与矿物、原材料、药剂、半成品、成品或设备直接接触,夹带大量杂质或污染物。这种废水污染程度较重,危害也大。洁净废水是生产中的冷却用水,未接触污染物质,只是水温略有升高。
第二类:矿山生活污水和径流污水。
(2)废水治理方法分类。处理废水的方法,随废水中所含污染物性质与回收水的用途而异。按方法的作用原理,分为四类。
A.物理治理法。这是最常用的一种净化治理废水的技术,既可作为独立的治理方法应用,也可用做化学法、物理化学法和生物化学法的预处理方法,甚至成为这些方法不可分割的一个组成部分。
物理治理法主要是用来分离和回收废水中的悬浮性物质,处理过程中不改变污染物质的组成和性质。但对于多数废水,处理后往往达不到较为理想的效果,还需与其他治理方法联合使用。然而,这种治理方法的设备比较简单、操作方便,对某些废水的分离效果良好,使用还相当广泛。
B.化学治理法。通过化学反应,改变废水中污染物的化学性质和状态,分离和回收废水中的胶体物质,溶解性物质等污染物质,消除其毒性。
化学治理法需用化学药剂或材料,因而处理费用较高,运行管理也较严格。通常,化学治理法需与物理治理法配合起来使用。如,处理废水前,往往用沉淀或过滤等手段作为前期处理;在某些场合下,又须用沉淀和过滤等手段进行后处理。
C.物理化学治理法。废水处理过程中,经常利用污染性物质从一相转移到另一相的过程,即传质过程,分离废水中的溶解性物质,回收其中的有用成分,以使废水得到深度净化。从废水中回收某种特定的物质,或是有毒、有害,又不易被微生物降解的污染物质时,采用这种治理方法最为有效。
D.生物化学治理法。处理废水过程中,利用自然界存在的大量微生物具有氧化分解有机物,并将其转化为无机物的功能,采用一定的人工措施,创造出有利于微生物生长繁殖的环境,使其大量繁殖,以提高分解氧化有机物效率,达到净化废水的目的。
实践表明,利用微生物处理工业废水中的有机物,具有效率高、运行费用低、分解后的污泥可用做肥料等优点。故主要用来除去废水中溶解的或胶状的有机污染物质。
(3)废水处理程度分类。废水治理程度一般划分为一级、二级和三级治理。
A.一级治理。多用机械方法和简单的化学方法,除去废水中的悬浮态或胶体态物质、浮油以及中合酸碱、进行pH值调整等都属于初级处理,常作为进一步处理的准备阶段。对于重金属污染轻微的废水,可以作为主要的处理形式。一般经过一级处理后,悬浮性固体的去除率为70%~80%,而BOD的去除率只有20%~30%,废水净化程度不高。
B.二级治理。经过一级治理后的废水,还含有大量溶解状态的污染质、胶体物、氯化物和硫化物等有害物质。二级治理的任务主要是去除废水中的有机污染物。通常采用生物化学方法,去除可生物降解的溶解性有机污染物和部分胶体污染物,用以减少废水的BOD和部分COD。经二级治理以后可去除90%左右能被生物降解的有机物,90%~95%的固体悬浮物以及80%~95%的BOD。也可采用化学混凝法和沉淀法进行处理。
C.三级治理(又称深度治理)。将二级治理后的污水,再用物理化学技术治理,去除可溶性的重金属无机物,不能降解的有机物,各种病毒、病菌、磷、氮等,最后达到某种特定的水质要求或使用标准。
废水的治理程度决定于治理后水的出路和欲利用情况。若纳入公共下水管道和灌溉,多数废水仅着眼于一级治理。若排入到水体,要根据受纳水体水质的要求,决定治理程度,并考虑到近期与远期的情况,分期实施。对一些成分简单的废水,往往采用某一单元技术便可达到目的,没有必要再分成一、二、三级治理。只有成分复杂、或成分虽然单纯但浓度较高,要求处理程度也较高的废水,方联合采用多种治理技术。
矿山废水的治理必须建立在对废水控制的基础上,首先要采取有效措施,减少通过各种途径进入矿山的水量,并控制废水扩散,另外就是改进生产工艺降低和杜绝污染源的发生量。
(4)矿山废水的利用。
A.循环用水,使废水在一定的生产过程中多次重复利用或采用接续供水系统,实现一水多用,不但可以达到降低废水排放量,也可降低污染物的排放浓度,节约用水。
B.废水中含有部分有用的矿物和进入水体中的原材料、半成品甚至成品,以及能源物质,可采用必要的措施,回收利用这些物质,化害为利。
C.经过用适当方法治理的废水,但治理等级可以分别用于饮用、灌溉或其他工业生活用水,治理方法和治理等级要按其用途而定。
面膜有两层,应该贴哪一层
第6章 样品加工
天然的岩石矿物是极不均匀的。将天然的地质样品变成可供实验室分析的分析试样,这个过程称之为样品加工或样品制备,俗称碎样。
样品加工是分析工作必不可少的重要组成部分,它不仅是分析工作的第一步,而且是分析质量保证的重要环节。分析中的误差可以通过不同的分析方法、不同的分析人员或不同实验室的相互比对发现,而样品加工不当引入的误差是分析工作本身无法消除的。分析工作者也许并不直接参与样品加工,然而必须懂得样品加工的重要性,了解样品加工的方法和程序,知道样品加工的基本要求和加工过程中可能存在的误差来源。
6.1 样品加工的原则和基本要求
采用经济有效的加工方法,将岩石矿物等地质样品经过破碎、过筛混匀、缩分,制备成代表性、均匀性合格的分析试样,这就是样品加工的原则。
样品加工的基本要求是: ① 加工后的试样应保证与原始样品的物质组分及其含量不发生变化,即试样的代表性不变。这就要求加工过程中不应有损失或沾污,且要防止诸如加工过程中因发热而引起的某些成分 ( 如亚铁、硫) 氧化而导致的成分含量变化; 这在样品加工中实际上极难完全做到,采取适当的措施将这些影响降低至最小是可以办到的。② 加工后的试样应该有良好的均匀性。欲使加工后的试样绝对均匀是不可能的,但是在一定的取样量前提下,试样待测组分的均匀性应满足分析工作的需要,无疑是必须达到的基本要求。③ 加工后的试样必须达到规定的粒度要求,便于后续分析工作的试样分解和测定。④ 样品加工的方法应根据不同矿种和不同的分析要求,采取不同的加工方法,确保样品加工的质量。
6.2 样品缩分公式———切乔特公式
6.2.1 切乔特公式及其物理意义
在地质样品的加工过程中,必然要经过破碎和缩分。如何保证缩分后样品的代表性,实际工作中通常使用切乔特公式判断,这是一个经验公式,可用下式表示:
Q=Kd2
式中: Q 为样品最低可靠质量,kg; d 为样品中最大颗粒直径,mm; K 为根据样品特性确定的缩分系数,它为一常数,必要时可通过试验求得。
6.2.2 样品的最低可靠质量 Q
样品加工的过程是样品粒度和质量不断减小的过程。在一定的样品粒度下,确保样品化学成分不变所需的样品最小质量,称之为样品的最低可靠质量,也可理解是确保样品缩分前后化学成分不变的样品最小质量。在样品加工过程中,凡样品质量大于最低可靠质量的,上述意义下是合格样品; 反之,则违犯了样品加工的规定,是不允许的。
从切乔特公式可以看出,影响 Q 值的主要因素是 K 值和样品的最大粒径。与 K 值大小相关的因素,如样品种类、待测元素的含量及其分布的均匀程度、分析精密度和准确度的要求等均会影响 K 值。样品的粒度越细,样品的最低可靠质量 Q 就越小。
6.2.3 缩分系数 K 值及其确定
不同种类样品的 K 值并不相同,见表 6.1。大多数的岩石矿物的 K 值在 0.1 ~0.5 之间,通常采用 0.2。待测组分的含量越低,分布越不均匀,所取的 K 值就越大; 分析质量要求越高的试样,也必须取较高的 K 值,以便将试样均匀性引起的误差降低至可以忽略的水平。
样品粒径 ( d) 及不同 K 值情况下的 Q 值列于表 6.2。
表 6.1 主要岩石矿物的缩分系数 ( K 值)
表 6.2 d、Q 与 K 的对应值
续表
严格地讲,K值应该针对特定的矿种和特定的测定组分进行试验而确定。对已经勘探的矿床,从最典型的矿石中取全巷或剥层样1000~2000kg,将其粉碎至10mm左右的颗粒,并缩分成若干个部分样品(通常分为8~16个部分),然后进一步粉碎,选用不同K值缩分,缩分过程中不丢弃任何一份样品,最终制成分析试样。对每组分析试样进行待测组分的测定,根据测定结果的平均偏差确定最合理的系数K。以后该矿床的样品加工就采用该K值。
6.2.4 切乔特公式应用中特别需要注意的问题
鉴于切乔特公式是一个经验的公式,它有一定的局限性;对于组成极其复杂、化学成分多变且含量变化悬殊的岩石矿物这一特定的对象而言,下列问题是需要重视的。
1)同一样品的不同组分,其K值差别可能很大。如石英砂中的SiO2,即使取很小的K值,也能保证分析结果有良好的重现性。对Cr2O3或TFe而言,要保证样品的代表性,其缩分系数K值就要大得多。
2)以元素状态或独立矿物存在的痕量元素,其K值与大多数其他组分的K值会有很大的差异;在某些情况下,切乔特公式不适用。例如金矿石,其中金很可能以自然金粒形态存在,分布极不均匀,且金有良好的延展性,金不能与基岩介质同步粉碎。若用基岩介质的最大颗粒直接代替金粒,显然是不合适的。
3)以K=0.2计算,样品粒度为200目(0.074mm)时,由切乔特公式求得可靠的最低样品质量为1.0925g。因此,取K值为0.2时得到200目分析试样也不是绝对均匀的;当取样量小于1g时,某些组分的不均匀性就有可能出现。但是,在近代的岩石矿物分析中,取样量低于1g是常见的做法,分析结果表明样品的均匀性并没有问题,可能的解释是由于样品加工中的K值一般都取得较大。加工后的试样粒度往往不是200目,而是-200目,即试样粒度小于0.074mm。尽管如此,分析工作者必须清醒地认识到,分析时的取样与样品加工中的缩分是性质完全相同的,是在更细粒度下的缩分,它对样品代表性仍然是有影响的。近代大型仪器分析取样量有不断减少的趋势,其潜在的取样代表性风险不容低估。
对于样品加工问题的研究远远落后于分析技术的研究。事实上,分析技术的发展对样品加工提出了更高的要求,这点常常被忽视。
6.3 一般岩石矿物样品的加工
样品加工一般可分为3个阶段,即粗碎、中碎和细碎。每个阶段又包括破碎、过筛、混匀和缩分4道工序。根据样品的质量和原始样品的情况,每件样品不一定都要经过3个阶段或4道工序。样品加工过程中应当留存相应的副样。
6.3.1 样品加工流程
一般样品加工的流程如图6.1所示。
图6.1 一般样品加工流程
6.3.2 关于样品加工的粒度要求
按照《地质矿产实验室测试质量管理规范》(DZ/T0130—2006)规定,各类岩石矿物样品加工后的试样粒度应符合表6.3的要求。
表6.3 分析试样的粒度要求
如果样品矿种不明,则加工后的试样粒度一般为0.097~0.074mm。
试样粒度是样品加工中的重要指标,其原因是它直接与试样的均匀性有关;试样越细,其均匀性越好,取样误差越小。另外,粒度越细,试样分析越方便。但是,某些矿种的样品加工粒度又不宜太细。例如黄铁矿,粒度越细,硫的氧化越严重,导致分析结果失真。因此,样品的加工粒度要求应视样品的类型而定,凡是在加工过程中组分不易变化或丢失的样品,加工粒度最好碎至200目。当然在金属的加工机械中粉碎,粒度越细,被污染的可能性就越大。
6.4 金矿和铂族元素样品的加工
6.4.1 金矿样品的特性
金矿样品中金往往以自然金形态存在,嵌布极不均匀。由于金含量低、强度大、延展性好,故样品的加工存在一定的困难,尤其是含粗粒、巨粒金的样品。
6.4.2 不同粒级金矿样品加工
6.4.2.1 金矿样品粒级的划分
矿石中自然金的粒度不一,样品加工的难易程度也不同,加工流程也不同。
金矿粒级的划分见表6.4。
表6.4 金矿粒级的划分
金粒度也可以用实验方法大致确定,常用的方法是人工重砂法和筛上残金比法。
人工重砂法是将原样在颚式破碎机破碎至全部通过18目筛(样品粒度为1.00mm)后,缩分一半,继续加工为分析试样;另一半做人工重砂,进行自然金粒度分布情况的测定。为了使结果有一定的代表性,同一矿区或矿点的样品应多做几件人工重砂测定,重要的零星样品也可采用此法。
筛上残金比法是称取40~80g粒度为0.075mm的分析副样,用振动筛机过筛或水析过筛,筛上残留试样的质量为称取分析副样质量的0.5%~3.5%时,取下,烘干,称量。筛上残留试样的质量占过筛试样全部质量的百分比为A;分别测定筛上试样和过筛试样中的含金量,筛上残金的量占过筛样全部金的百分比为B。
B/A<1.5,可判定为微、细粒金矿,属易加工金样;
B/A为1.5~4,可判定中粒级金矿,属可加工金样;
B/A>4,可判定为粗粒金矿或巨粒级金矿,属难加工金样。
6.4.2.2 不同粒级金矿样品的加工流程
不同粒级的金矿样品应该选用不同的加工流程,并兼顾不同的分析取样量。流程中的关键是确定第一次缩分时的样品粒度。有条件的矿区,应通过试验确定。图6.2给出了不同粒级金矿样品加工流程,以供使用中参考。
6.4.3 金矿样品加工的特殊措施
为了保证金矿样品的加工质量,卡林型金矿可按一般样品加工流程进行,K值可取0.2~0.4;其他金矿除按图6.2的流程加工外,还应采取以下措施。
1)避免使用对辊式破碎机。
2)中碎时采用圆盘式破碎机,适当调大进料和出料粒度,细碎采用棒磨机。
3)延长棒磨时间。
4)对于基岩介质(即脉石)较软的金矿样品,可以定量加入不含待测元素的石英岩或石英砂,增加样品自磨效果,减少粘结;但必须注意根据加入的石英岩或石英砂量和样品量,校正最终分析结果。
5)缩分后样品量不应少于500g。
6)样品粉碎至粒度为0.075mm后,可以不过筛,避免过筛造成贫化效应,使金的结果偏低。
7)对于巨粒金样品,也可以在样品破碎后分别测定筛上物和筛下物,最终以质量为权重,加权平均后求得试样中金含量。
图6.2 不同粒级金矿样品加工流程
6.4.4 金矿样品加工质量检查
6.4.4.1 用分析结果的精密度检查
称取相同质量(例如20g)试样由同一分析者同时进行3份以上平行分析,从分析结果的精密度判定加工质量;再取不同量的试样进行分析,视其精密度是否符合要求。
6.4.4.2 用副样检查
在第一次缩分时,将应弃去的一半样品保留,平行加工成另一试样。然后对两份试样进行平行分析,以检查制样是否有代表性和第一次缩分的粒度和留样量是否合适。
6.4.5 铂族元素矿样品加工
铂族矿样品加工可参照金矿样品的加工方法。
6.5 特殊样品加工
6.5.1 黄铁矿和测定亚铁样品加工
中碎后通过18目筛(粒度1.00mm)的样品,直接用棒磨机或圆盘细碎机加工至0.149mm(100目)。使用圆盘机加工时不能将磨盘调得过紧,以免磨盘发热引起硫或亚铁氧化。若磨盘发热,则应停止磨样,待其温度下降后再继续磨样。也可以采用水冷方式控制磨盘温度,副样应装入玻璃瓶中密封保存。测定亚铁的分析试样不烘样。
6.5.2 铬铁矿样品加工
由于铬铁比值是评价铬铁矿石质量的重要指标,因此加工时应防止铁质混入。宜采用高强度锰钢磨盘或镶合金磨盘加工至0.177~0.149mm后,再用玛瑙球磨机或玛瑙研钵研细至0.074mm。
6.5.3 玻璃及陶瓷原料所用的石英砂、石英岩、高岭土、黏土、瓷土等样品加工
这类样品加工中应严格避免铁、铬等影响颜色的元素的污染。致密的石英岩硬度大,不易粉碎,可其将在800℃灼烧1h,然后迅速置于冷水中骤冷,碎裂后风干,再破碎。也可用多层洁净耐磨布包裹后撞击使其破碎。少量石英砂或水晶等样品的研磨宜在玛瑙研钵中进行,也可使用玛瑙球磨机或翡翠盘磨机加工,过筛应采用尼龙筛,筛的边框应为塑料材料,盛样器皿和分样工具也应采用塑料制品。
6.5.4 岩盐、芒硝、石膏样品加工
此类样品的特殊性在于其水分的不稳定。为避免水分的损失,样品应尽可能就地及时加工并进行分析。若需长途送样,样品应瓶装后尽快运送。实验室收样后立即粗碎,迅速置于搪瓷盘中称量。然后于40~50℃烘6~8h,必要时可延长至20h;烘干后再称量,计算样品在过程中失去的水分。然后再继续加工,在加工过程中仍应防止水分变化,故应尽快将样品加工完成并立即装瓶密封。此类样品应留粗副样,装瓶密封保存。
石膏样品的制样粒度为0.125mm,对不含芒硝、岩盐的样品于55℃烘样2h,含芒硝、岩盐的样品不烘样立即装瓶。
岩盐样品的制样粒度为0.149mm。
6.5.5 云母、石棉样品加工
云母多呈片状、鳞片状或板状,石棉为纤维状,这类样品可先用剪刀剪碎,再在玛瑙研钵中磨细。也可以先灼烧使云母变脆,再粉碎,混匀。还可采用棒磨机粉碎至0.125mm。
6.5.6 沸石样品加工
沸石样品不烘样,留存的副样也应装瓶密封。沸石测定不同项目要求的粒度不一,需要分步粉碎,其加工流程见图6.3。
6.5.7 膨润土样品加工
膨润土系蒙脱石为主的黏土类矿物,极易吸水,而其层间水又不稳定。样品加工前于105℃烘干,然后尽快进行粗碎和中碎。加工至粒度为1.00mm后留副样,于塑料瓶中密封保存。正样置于洁净的搪瓷盘中,再于105℃烘干,细碎至0.074mm,供可交换阳离子和阳离子交换总量、脱色率、吸蓝量、胶质价、膨胀容积、pH值等项目分析用。进行X射线衍射分析、差热分析和红外光谱分析的试样则不烘样,以免失去层间水。
6.5.8 物相分析样品加工
供物相分析的试样对粒度要求较严,为了获得相对可靠的分析结果,试样的粒度应尽可能均匀一致;制样时磨盘不要调得过紧,应逐步破碎,多次过筛避免过粉碎。物相分析的试样粒度视矿物和分相的要求不同也不尽一致。一般为0.149mm,不烘样。硫化物高的样品宜用手工磨细或棒磨机细碎。有些样品的物相分析试样粒度要求为0.097mm或更细。
图6.3 沸石样品加工推荐流程
6.5.9 单矿物样品加工
因样品量很少,可用玛瑙研钵直接研磨至0.074mm,防止沾污和损失。
6.5.10 组合分析样品加工
组合样是由多件或几十件样按采样长度比计算得到的每件单样应称取的质量组合而成。组合样的质量不少于200g。应先将其置于磨盘调得较松的圆盘细碎机中细碎,然后选用比原样粒度稍粗的筛子过筛,再充分混匀、缩分、粉碎至所需的粒度。也可将组合后的样品直接装入棒磨筒中棒磨至所需粒度。如不需要对组合样粉碎,也可用棒磨机棒磨样30min使其初步混匀。
组合样的加工关键是必须混匀。
6.5.11 水系沉积物、土壤样品和煤样加工
水系沉积物和土壤样品一般不烘样。可在刚玉或玛瑙碎样机中加工至粒度为0.074mm的分析试样,加工后的试样质量应不少于加工样品质量的90%,不过筛,凭手感检查粒度是否达到要求。
煤样加工按GB/T474执行。
6.6 样品加工中的质量控制
样品加工应尽可能防止引入误差,否则误差将被带至后续的分析工作中,严重时将导致分析结果全部无效。
6.6.1 防止污染是样品加工质量保证的首要条件
样品加工中的污染是指在加工过程中,引入了样品之外的外来物质,即改变了样品的成分,从而导致了待测组分的分析结果与原样的真实结果存在显著性差异。其后果是分析结果失真,无效。从广义的角度看,加工过程中样品某个组分的损失使该组分的测定结果偏低也是一种污染,只不过是负污染。加工样品时,引入的污染杂质即使不是待测组分,对待测组分也无干扰,但由于其改变了样品的组成,实际上对样品进行了“稀释”,也是不允许的。
严格地讲,样品加工中的污染是不能避免的。“无污染制样”只是一种理想。它仅是指加工引入的污染可以控制在能够容忍的水平下的一种相对概念。防止污染意味着必须付出相应的成本。在满足分析结果要求的准确度前提下,应尽量减少加工成本是应当遵循的原则。
试样加工中的污染来源是多方面的。多数污染是可以防止的,如样品交叉污染、样品加工室的环境污染、制样人员佩戴金属饰品引起的污染等。有些污染只要严格执行加工规程也可以避免,如高纯石英砂和水晶样品严格禁止使用铁质机械粉碎即可防止铁的污染。唯独大部分岩石矿物样品加工时因碎样设备材料的磨损而引入的污染是无法避免的。铁或其合金类的加工设备在长时间使用后,必然会引入铁或其他金属元素,刚玉材料的加工设备必然会引入铝等元素污染。对多数样品而言,这种污染尚可接受;如果引入的元素正好是样品中要求测定的痕量组分,则必须变更碎样设备。
6.6.2 严格控制样品加工的损耗率
在样品加工过程中,样品的损失是必然的,粗碎时样品的蹦跳、细碎时排风除尘和碎样机粘结残留均会引起损耗。必须认识到,样品的损耗可能会影响样品的代表性,故应控制损耗率。损耗率的计算公式为:
岩石矿物分析第一分册基础知识和通用技术
损耗率按粗碎、中碎和细碎3个阶段计算,应分别小于3%、5%和7%。
细碎时若排风量过大,会引起密度高的金属矿物相对富集,从而使样品的代表性受到影响。
6.6.3 高度重视缩分对样品加工质量的影响
样品加工全过程的各个环节均会影响样品的质量,其中缩分这一环节的影响最应重视。缩分必须满足的质量要求是:一般样品的缩分必须遵循切乔特公式,特殊样品如金矿不得随意缩分,必须在满足一定粒度后方能缩分;缩分前样品必须充分混匀,缩分误差必须小于3%。
缩分误差的计算公式是:
岩石矿物分析第一分册基础知识和通用技术
式中:R为缩分误差,%;E、F为缩分后两个部分样品的质量,g;G为缩分前样品的质量,g。
6.6.4 坚持样品加工的内部抽查制度和样品的过筛检查
为了保证样品加工质量,必要的内部抽查制度可按规定执行。其基本做法是:先确定检查的样品,在拟检查的样品第一次缩分后准备弃去的部分保留,以备检查用。待样品加工完成后,再将供检查用的部分按正样的加工流程加工,将此加工后的样品和正样同时送交实验室进行主要组分的测定,从分析结果判断样品加工的质量。
过筛的目的是保证样品的粒度,以确保样品缩分后的代表性。提取不同粒级的副样进行过筛检查,其实质就是检查加工过程中试样的代表性是否有保证。对于完成样品加工后的分析试样的过筛检查为的是确认粒度是否符合分析要求。过筛率应达到95%以上。所谓过筛率就是通过规定筛目的样品质量占过筛前样品质量的比例。
6.7 关于超细粉碎
在分析技术日益进步的今天,分析者发现,原先一直被忽视的取样误差在取样量不断减小的情况下,它已成为分析误差的重要来源之一。有关试样均匀性的问题已受到关注。试样的均匀性无疑是与样品的加工粒度相关的。粒度越细,均匀性越好。于是人们对于超细粉碎的样品加工技术产生了兴趣。现在,国内外已制备了若干个经过超细粉碎的地质标准物质。经均匀性检验,有的标准物质的均匀性极好,毫克级的取样量,其均匀性即有保证。这对于地质样品加工而言,无疑是一项值得重视的成果。当然,试样的均匀性除了与粒度相关外,还与样品的种类、待测组分的赋存状态和含量等诸多因素有关。地质样品经过超细粉碎后,其均匀性可以得到明显的改善,这是一个不容争辩的事实。
地质样品的超细粉碎,是指粒度已达0.075mm的试样再于雷蒙磨或气流磨等超细加工设备中进行粉碎,使其粒度变得更细(通常小于20μm)。将粒度0.074mm的试样与经过超细粉碎后的试样进行粒度分布测量对比,可以发现经超细粉碎后的试样粒度分布区间明显变窄,主要是直径较大的颗粒减少了。这也许是超细试样可以减小取样量和取样误差的原因。
超细粉碎对地质样品分析的影响不仅是可以使最小取样量大幅度地降低,从而为近代高灵敏度的分析技术拓展更为广阔的应用天地;超细粉碎后的试样表面积大大增加,使试样分解的难度大大减小,分解试样所需的试剂用量很少,加热时间也明显缩短;既减少了溶样引入的污染,更重要的是减少了环境污染,是实现“绿色”分析的重要途径,也是实验室落实“节能减排”国策的有效措施。
与超细粉碎相联系的是试样粒度检测方法的改变。传统的过筛方法用于确定超细试样粒度肯定已不适用,而代之以现代的粒度检测方法。目前广泛使用的激光粒度仪可以快速地提供直观的粒度分布图、多项特征粒度表、详尽的粒度分布表等有关试样粒度的“立体”信息,这对分析工作的取样理论和取样误差等方面的研究是很有价值的。
应当指出的是,超细粉碎的加工技术目前只停留在标准物质的研制上。在日常的例行分析中的应用研究尚未起步。超细粉碎中可能存在的问题尚未进行系统的研究。超细粉碎设备对大批样品加工的可行性以及粉碎后加工设备的清洗和防止样品交叉污染等许多实际问题尚待解决,超细粉碎对各类地质样品加工后可能发生的问题也远未暴露;但超细粉碎作为一种样品加工技术,其优点无疑是显而易见的。
附表
附表 6.1 试验筛筛号———孔径对照表
注: GB/T 6003.1—1997,金属统编织网试验筛; 等效采用 ISO 3310—1: 1990 试验筛———技术要求和检验———第一部分: 金属统编织网试验筛。
参 考 文 献
地质矿产实验室测试质量管理规范 第 2 部分: 岩石矿物分析试样制备 ( DZ/T 0130.2—2006) [S].2006.北京: 中国标准出版社,16-26
王金木 .1990.工业分析取样技术的进度与现状 [J].分析试验室,9 ( 1) : 62 -65
王晓红,高玉淑,王毅民 .2006.超细地质标准物质及其应用 [J].自然科学进展,16 ( 3) : 309 -315
王毅民,王晓红,高玉淑 .2009.地质标准物质粒度测量与表征的现代方法 [J].地质通报,28 ( 1) :137-145
杨政 .1992.痕量金分析方法和金矿碎样技术 [M].北京: 地质出版社,37 -46
郑大中,郑若锋 .1992.岩矿样品新缩分公式的建立及其应用 [J].地质实验室,8 ( 4) : 204 -211
本章编写人: 熊及滉 ( 四川省地矿局成都综合岩矿测试中心) 。
凌进中 ( 中国地质调查局西安地质调查中心) 。
脸上痘印痘坑做磨皮可以去除吗
不可以,对皮肤损伤太大 1.用按摩法去除痘坑 按摩可以促进面部皮肤的血液循环,增强皮肤的修复能力。因此,刚刚脱掉血的疤痕可以用按摩法来去除。 方法:先在脸上涂抹一些具有修复功能的护肤品,然后用手掌的根部轻揉疤痕处,每天揉3次,每次大约揉10分钟。坚持按摩两周左右,疤痕就可变淡甚至消灭。 2.生姜片去痘坑 生姜具有抑制肉芽组织生长的功效,可用来弱化和抑制疤痕的生长。 方法:把新鲜的生姜切成片,用姜片轻轻地擦拭疤痕处,然后把姜片敷在疤痕部位,每隔3-5分钟换一次姜片,可反复换3次,坚持这样敷两周,就可以淡化疤痕,还能使疤痕部位的皮肤变得白嫩。 3.涂抹维生素C和维生素E去痘坑 若是疤痕的颜色较深,勘察外业土应该怎么描述
一、杂填土:
杂色,松散,大孔隙,上部为砼地坪,含较多的碎石。
二、淤泥质粉质粘土:
灰色~灰黑色,流塑,部分夹有机质;无摇振反应,稍有光滑,干强度低,韧性低,有腐味
三、粘土:
灰黄色,可塑,无摇振反应、光滑,干强度高,韧性高,局部分布。
四、粘土:
灰黄~褐黄色,硬塑,含少量的铁,锰质结核,可塑,无摇振反应,光滑,干强度高,韧性高。
五、粉质粘土:
青灰色,软~可塑状,为后期沉积,摇振反应无,稍有光滑,干强度中等,韧性中等。
六、粉质粘土:
灰黄~褐黄色,硬塑,含青灰色粘土团块无摇振反应,稍有光滑,干强度中等,韧性中等。
七、粉质粘土:
灰黄~褐黄色,可塑,无摇振反应,稍有光滑,干强度中等,韧性中等。
八、粉质粘土:
灰黄色,可塑,稍有光滑,干强度中等,韧性中等。局部含团块状密实粉土。
九、粉质粘土:
灰黄~褐黄色,钙质结核,硬塑,无摇振反应,稍有光滑,干强度中等,韧性中等。
十、粉质粘土:
灰黄~灰色,软~可塑,粉粒含量高,无摇振反应,稍有光滑,干强中等,韧性中等。
十一、粉质粘土:
上部浅灰色,中下部褐黄色,硬塑,含少量铁锰质结核,无摇振反应,切面光滑,干强度高,韧性高。
十二、粉质粘土夹粉土:
灰黄~青灰色,可塑,含少量云母片,无摇振反应,稍有光滑,干强度中等,韧性中等。
十三、粉砂:
黄色,含云母片,中密。主要由石英等矿物组成,饱和状态。
十四、粉砂:
上部灰黄色,底部浅灰色,含云母片,饱和状态,密实。
十五、粉质粘土夹粉土:
灰黄色,软~可塑,无摇振反应,稍有光滑,干强度中等,韧性中等。局部夹薄层粉土。
十六、粉土:
灰黄,含云母片,很湿,稍密。摇振反应中等,无光泽反应,干强度低,韧性低。
十七、粉砂:
灰黄,含云母片,饱和,密实,主要成分由长石、石英、云母等组成,磨园度好、分、选性好。
十八、粉土:
浅灰色,含云母片,摇振反应中等,无泽反应,干强度低,韧性低。
十九、粘土夹粉砂:
灰黄色,褐黄色,可塑,含少量钙质结核核径为3cm。夹薄层壮中密粉砂,具水平层理,无摇振反应,切面稍光滑,干强度高,韧性高。
二十、粘土:
灰黄,褐黄色,含少量铁,锰质结核,无摇振反应,切面光滑,干强度高,韧性高。
二十一、粉质粘土:
褐黄色,硬塑,含白色高龄土条带用钙质结核,(核径为0.3~2cm),无摇振反应,切面光滑,干强度高,韧性高。
二十二、粉质粘土夹粉土:
浅灰色,可塑,粉粒含量高,无摇振反应,稍有光滑,干强度中等,韧性中等。局部夹30cm厚薄层粉土,湿,中密~密实。
二十三、碎石土:
浅黄色,灰黄色,中密~密实,碎石含量50%~70%棱角形,次棱角形,一般直径20~40mm最大粒径120mm 成份以灰岩为主,少量为砂岩,由老黄土、新黄土,中粗砂,砾石充填。
二十四、 中风化灰岩:
灰~深灰色,隐晶质结构中厚层状构造,岩石结构致密坚硬,裂隙发育大部分闭合,由方解石充填,岩芯多呈短柱状,长柱,少量呈碎石块状,碎粒状,土状,长度20~40cm局部溶蚀现像严重,岩芯表面呈峰窝状,溶径5~20mm,最大50mm.
二十五、全风化粘土岩:
褐灰色,黄褐色,棕红色。结构构造完全破坏岩芯呈土状,含风化碎屑,碎块,手捏易碎,遇水易分解。
二十六、强风化粘土岩:
褐灰色,黄褐色。棕红色,结构构造大部分破坏,岩芯呈碎块状,节理裂隙较发育。
二十七、页岩:
灰黄色,薄层状,手捏易散,遇水易崩解。
扩展资料
杂填土工程性质:
一、性质不均厚度变化大。
1、由于杂填土的堆积条件、堆积时间,特别是物质来源和组成成分的复杂和差异,造成杂填土的性质很不均匀,分布范围及厚度的变化均缺乏规律性,带有极大的人为随意性,往往在很小范围内,就有很大的变化。
2、当杂填土的堆积时间愈长,物质组成愈均匀、颗粒愈粗,有机物含量愈少,则作为天然地基的可能性愈大。
二、变形大并有湿陷性。
1、就其变形特性而言,杂填土往往是一种欠压密土,一般具有较高的压缩性。对部分新的杂填土,除正常荷载作用下的沉降外,还存在自重压力下沉降及湿陷变形的特点;对生活垃圾土还存在因进一步分解腐殖质而引起的变形。
2、在干旱和半干旱地区,干或稍湿的杂填土,往往具有浸水湿陷性。堆积时间短、结构疏松,这是杂填土浸水湿陷和变形大的主要原因。
三、压缩性大强度低。
1、杂填土的物质成分异常复杂,不同物质成分,直接影晌土的工程性质。当建筑垃圾土的组成物以砖块为主时,则优于以瓦片为主的土。
2、建筑垃圾土和工业废料土,在一般情况下优于生活垃圾土。因生活垃圾土物质成分杂乱,含大量有机质和未分解的植物质,具有很大的压缩性和很低的强度。即使堆积时间较长,仍较松软。
参考资料来源:百度百科:土的工程地质分类