鸡兔同笼如何用列表方法解答

鸡兔同笼有几种列表法

一共有六种。

1、公式1:

(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数

总只数-鸡的只数=兔的只数

2、公式2:

( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数

总只数-兔的只数=鸡的只数

3、公式3:

总脚数÷2—总头数=兔的只数

总只数—兔的只数=鸡的只数

4、公式4:

兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数

5、公式5:

鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数

6、公式6 :

4×+2(总数-x)=总脚数 (x=兔,总数-x=鸡数,用于方程)

扩展资料

鸡兔同笼问题历史:

鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:

今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

这四句话的意思是:

有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔?

算这个有个最简单的算法。

(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数

(94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23)

解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了总头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。

参考资料来源:

百度百科—鸡兔同笼

鸡兔同笼有几种列表法?分别举例。

有3种 第一种:逐一列表法;第二种:取中列表法;第三种:跳跃列表法。 1,鸡兔同笼用列表方法解答解法:把鸡的数、脚数与兔子的头数、脚数列表一,一对应,最后查出鸡有多少,兔有多少。 2,鸡兔同笼,是中国古代著名趣题之一,也是是中国古代的数学名题之一,大约在1500年前记载于《孙子算经》之中。 3,一般解法有:假设法,方程法,抬腿法,列表法。

鸡兔同笼怎么做?列表法

先假设笼里全部是鸡,于是根据鸡兔的总数就可以算出在假设下脚数乘2,把得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-鸡兔总数x2)÷2 。

鸡兔同笼列表法有几种

一共有六种。

1、公式1:

(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数

总只数-鸡的只数=兔的只数

2、公式2:

( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数

总只数-兔的只数=鸡的只数

3、公式3:

总脚数÷2—总头数=兔的只数

总只数—兔的只数=鸡的只数

4、公式4:

兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数

5、公式5:

鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数

6、公式6 :

4×+2(总数-x)=总脚数 (x=兔,总数-x=鸡数,用于方程)

扩展资料

鸡兔同笼问题历史:

鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:

今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

这四句话的意思是:

有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔?

算这个有个最简单的算法。

(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数

(94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23)

解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了总头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。

参考资料来源:

百度百科—鸡兔同笼

鸡兔同笼考试时可以用列表法解决吗?

导读:“鸡兔同笼”问题是小学阶段一个重要的奥数问题,本内容原来设置在旧版人教版教材六年级上册《数学广角》里面,新人教版教材将其提前到四年级下册数学教科书的《数学广角》里面,“鸡兔同笼”问题能够帮助血红色呢个提高问题的分析能力和解决问题的逻辑思维能力。今天,J老师和各位同学一起学习鸡兔同笼问题,我们用什么方法解决呢?给大家介绍常用的六种方法,看看哪一种方法最适合你。 说起“鸡兔同笼”就要说起1500年前的《孙子算经》里面的经典题目(传到日本变成了”龟鹤问题“),我们就从这道题目入手,书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一

文章标签:教育学习理工学科数学未分类