金刚石复合片钻头的强度是由什么决定的?

金刚石钻头及其结构参数

(一)金刚石钻头的组成与分类

1.金刚石钻头组成

金刚石钻头是金刚石钻进破碎岩石的工具,它由三部分组成;即:金刚石、胎体和钻头体(图2-60)。

图2-60 金刚石钻头组成

1—金刚石;2—胎体;3—钻头体

2.金刚石钻头分类

金刚石钻头按金刚石被包镶于胎体部位的不同,有孕镶金刚石钻头和表镶金刚石钻头之分。把金刚石包镶于胎体内部的钻头称为孕镶金刚石钻头;金刚石包镶出露于胎体表面的钻头称为表镶金刚石钻头。

金刚石钻头还可按其用途不同,分为提钻取心金刚石钻头和绳索取心金刚石钻头;按制作材料不同,分为聚晶金刚石(PCD)钻头和金刚石复合片(PDC)钻头;按制作加工工艺、方法不同,分为热压、电镀钻头等。

(二)金刚石钻头的结构参数

金刚石钻头的结构参数包括:钻头体、金刚石含量、金刚石粒度、胎体硬度、水口、钻头唇面形状等。

1.钻头体

金刚石钻头体的制作要求如下:

一般用中碳钢加工而成。双管钻头的钻头体较长,一般为115mm,壁较薄,上端有内螺纹与扩孔器相连接。

单管钻头的钻头体较短,一般为75mm,壁较厚、上端车有外螺纹与扩孔器相连接。

一个钻头包镶的金刚石量,称为金刚石含量,以克拉ct计。

2.金刚石含量

含量是根据钻头结构、直径及所钻岩石性质而确定的。钻头直径大,克取岩石面积大,则所需金刚石数量多;反之,则少些。同径同结构钻头,钻进强研磨性地层时,金刚石含量应大些,以减少单粒金刚石负担,维持钻头较长工作时间。钻进研磨性小的岩层,金刚石含量应小些,以利于出刃。一般同径孕镶金刚石钻头的金刚石含量比同径表镶钻头稍多。

3.金刚石粒度

分颗粒级和粉末级两类。

颗粒级金刚石粒度直径大于1mm,其粒度均以粒/ct表示;粉末级金刚石粒度直径小于1mm,粒度以“目”表示。“目”即网目数,为筛网在每平方英寸内的网眼数。

表镶钻头金刚石粒度以粒/ct表示;孕镶钻头金刚石粒度以“目”表示。

4.金刚石钻头胎体

钻头胎体是钻头底部包镶金刚石的一圈合金;主要由骨架材料和黏结金属两部分组成。

金刚石钻头的质量,在很大程度上取决于钻头胎体成分及其性能。胎体采用粉末冶金法和电镀法制成各种形状。

对表镶钻头胎体,其作用在于牢固地包镶金刚石,并可靠地与刚体焊接;而孕镶钻头的胎体,除具有表镶钻头胎体作用外,还要保证金刚石在钻进过程中有自锐的作用。

金刚石钻头胎体硬度等级分别用HRC加硬度数值表示。如:HRC45,HRC40,HRC35,HRC30等。

5.金刚石钻头水口

钻头水口分别由底部、内、外侧部的水槽构成。

钻头水口作用:与硬质合金钻头的作用一样;疏通冲洗液;冷却钻头;排出岩粉;确保安全钻进施工。

6.金刚石钻头唇面形状

金刚石钻头的唇面形状是根据岩石性质决定的。目的是为了提高钻速,提高钻具的稳定性和延长钻头的使用寿命。

常见的唇面纵剖面形状有弧边形、半圆形、平底形、阶梯形、锥形和锯齿形等。

怎样根据岩石性能选择 金刚石钻头

金刚石钻头要根据岩石硬度才能确定钻头胎体硬度,岩石硬度不同金刚石钻头胎体也不同,其进尺速度也不同: 一.如果是.在硬的、坚硬的、可钻性级别高的和裂隙、破碎的岩石中钻进时,应选用细粒表镶或细目数孕镶的钻头、扩孔器。 二。在中硬的、可钻性级别低的和均质、完整的岩石中钻进时,应选用粗粒表镶或粗目数孕镶的钻头、扩孔器。 三,在研磨性强的岩石中钻进时,应选用硬胎体的钻头、扩孔器。 四,在研磨性弱的岩石中钻进时,应选用软胎体的钻头、扩孔器。 在我国石油内部分级有7个等级,1-7分别为:极软;软,中软,中,中硬,硬,极硬,按岩石硬度来排行分为10个等级,依次是:滑石、石膏、指甲、方解石、铜币、萤石、磷

金刚石结构性能和加工三个因素之间的关系

金刚石结构性能和加工因素之间的关系:

由于金刚石具有密度大、硬度高、强度大、耐磨耐酸碱性好,因此,在国民经济的各个工程领域、特别是在钻探工程施工中得到了广泛应用。

(一)金刚石性能

1.金刚石的力学性质

(1)硬度高

金刚石是世界上已发现矿物中硬度最高的矿物。它的莫氏硬度为10级,其研磨硬度为刚玉(莫氏硬度9级)的150倍,为石英(莫氏硬度7级)的1000倍,是硬合金的6倍,为碳化硅和碳化硼的2~3倍。

金刚石晶面硬度与其结晶体形态有关,八面体的大于十二面体的,十二面体的大于六面的,而且金刚石的晶体硬度还具有各向异性,八面体不同方向上硬度相差不大,十二面体中平行于晶面棱边的硬度最小,六面体中垂直于晶面棱边的硬度最小,而它们对角线方向上硬度最大。因此,在加工表镶钻头时要注意这种方向性。正确利用金刚石各向异性特性,可提高钻头寿命50%~60%。

(2)抗压强度大

金刚石具有极大的抗静压强度(简称强度)。强度的大小取决于金刚石晶体的形态、晶体的完好程度、杂质的成分和含量、晶体的组织结构等。一般浑圆状的、结构完好的金刚石强度大。天然金刚石的抗压强度高达8600MPa,为刚玉的3.5倍,硬质合金的1.5倍,钢的9倍。人造金刚石的强度目前还低于天然金刚石:用于钻探的人造金刚石强度一般要求在2500MPa以上,即60#单晶单颗粒抗压强度在85N以上。

硬度高、强度大是金刚石的独特性能之一。但它的脆性也大,受到冲击载荷易产生裂隙甚至破碎,其动压强度不及静压强度的四分之一。因此,在金刚石钻进中要避免冲破击碰撞,采取有效的减震、防震措施。

(3)耐磨性好

金刚石具有极高的耐磨性。在空气中它与金属的摩擦系数小于0.1。金刚石的耐磨性是刚玉的90倍,是硬质合金的40~200倍,是钢的2000~5000倍,这就决定了金刚石钻头耐磨的特性。金刚石的耐磨性和硬度一样,也具有各向异性,使用时要注意不同晶面及同一晶面不同方向上的耐磨性是不同的。

2.金刚石的物理性质

(1)颜色

纯净的金刚石应是无色透明的。天然金刚石由于含有微量杂质元素,使之呈现出各种颜色。常见的有浅黄色、浅棕色、浅绿色、玫瑰色和深棕色等。金刚石一般以色浅,透明度高的质量好。

(2)密度

金刚石的密度在3.27~3.56g/cm3之间,计算值取3.52g/cm3,它取决于金刚石晶体、杂质、包裹体、裂隙等。

(3)电磁性

金刚石一般是电的不良导体,但随温度升高,导电率有所增加。但含有少量硼的金刚石(呈天蓝色)其电阻率较低,是良好的半导体材料。

(4)导热性和热膨胀性

金刚石具有良好的导热性,金刚石的导热率是硬质合金的7倍,钻头胎体的5倍,一般岩石的10倍以上。这在钻孔中有足够冲洗液的冲洗条件下,对冷却钻头十分有利。

金刚石的热膨胀性,随温度变化而不同。低温时,热膨胀系数很低,有利于钻头的镶嵌;随着温度升高,热膨胀系数剧增。

3.金刚石的化学性质

(1)耐酸碱性

金刚石有很强的耐酸性,常温时不与酸起化学反应,与碱起缓慢作用。因此,可利用强酸来腐蚀废旧钻头,回收金刚石。只有在沸腾温度下,某些强酸(如硝酸、氢氟酸)对金刚石才有明显的腐蚀作用。

(2)亲油疏水性

金刚石是碳的结晶体,是非极性矿物,其表面有很强的亲油疏水性,能吸附一层油膜,而完全不吸水。因此,在钻进中用乳化冲洗液,能起到良好的润滑减阻作用。

(二)金刚石的应用

由于金刚石具有密度大、硬度高、强度大、耐磨耐酸碱性好,因此,在国民经济的各个工程领域、特别是在钻探工程施工中得到了广泛应用。

金刚石钻头和金刚石复合片钻头的区别

金刚石钻头属于一种大类,里面包含了金刚石复合片钻头。 金刚石钻头以不同的地层使用条件可分为普通金刚石钻头、聚晶金刚石复合片钻头两大类。 普通金刚石钻头适用于研磨性较高、地质较硬、地质复杂的地层。 聚晶金刚石复合片钻头能够被广泛的应用于硬质地层、软质地层、软硬适中的地层,其应用范围十分广泛。 刀片的不同是这两种金刚石钻头的主要差别所在。

金刚石-硬质合金复合片

(一)国产复合片

郑州磨料磨具磨削研究所于1982年研制成功PDC材料,并于1990年开始PDC刀具的工业化生产。与此同期,国内多家公司从美国引进了制造PDC的设备与技术,随后PDC产业迅速发展。目前我国PDC的产量已跃居世界首位。常用的国产复合片型号如表2-10所示。

(二)国外产的复合片

早期生产Stratapax复合片的主要厂家是美国G.E.公司和南非DeReers公司。其聚晶金刚石层用粒径0.3mm的金刚石粉料在温度1400℃和压力6000MPa条件下(添加钴作催化剂)压制而成。Stratapax复合片与天然金刚石的物理力学性质对比如表2-11所示。

表2-10 常用的国产复合片型号及尺寸

表2-11 Strtapax片与天然金刚石的物理机械特性对比

由于金刚石层中有触媒金属,可能导致复合片在加热至1000℃以上时性能下降,在金刚石层中出现径向裂纹,甚至出现与硬质合金衬底分层。而复合片在900~950℃条件下性能基本不发生变化,所以应采用银基低温焊料把它们焊在钻头刚体或胎体上。

表2-11中的相对耐磨性指标以工具切削刃磨损量达0.254mm所需的时间为单位(min)。获得数据的试验条件是在无冷却、线速度2.54m/s、切削深度0.762mm和每转给进量0.127mm条件下切削标准砂轮。由表2-11的数据可看出,Strtapax复合片的耐磨性比硬质合金高100~150倍,与天然金刚石相当。Strtapax片的工作表面硬度几乎是硬质合金的3倍,而是天然金刚石的2/3~1/2。

DeReers公司用于Syndrill型复合片的人造金刚石聚晶与天然金刚石和硬质合金的物理力学特性对比如表2-12所示。复合片中所用的人造金刚石聚晶性能基本与天然金刚石相近,明显高于硬质合金的硬度和抗压强度。由于调整了单晶的方向,使人造聚晶金刚石具有更均匀的硬度,从而提高了其耐磨性。但其抗弯强度明显小于硬质合金,所以抗冲击韧性较差。

表2-12 Syndrill型复合片中聚晶人造金刚石与天然金刚石和硬质合金的性能对比

独联体主要使用两种型号的复合片制造钻头:8×3mm和13.5×3.5mm,其中金刚石层的厚度0.7~0.8mm。

(三)乌克兰在复合片研究方面的进展

1.增大衬底接触面积的效果分析

1985年乌克兰超硬材料研究所即开始生产金刚石复合片。在复合片钻头投入工业应用的初期,发现深孔钻进中复合片钻头的主要损坏形式为:金刚石层的相对耐磨性差使其钻头寿命不长,金刚石层与衬底脱离、焊缝破坏、复合片脱落等。根据2154个复合片的观测结果发现,复合片钻头最主要的损坏形式是金刚石层与衬底脱开,占21%。这时仅靠衬底起切削具的作用,导致钻头的实钻指标迅速下降。

为了提高金刚石层与硬质合金衬底的连接强度,于1987年提出了在衬底上加工凹槽增大接触面积的方法。衬底表面相互垂直的半圆形凹槽如图2-2(a)所示,加工出来的凹槽深0.35mm(图2-2(b))。以直径13.5mm的复合片为例,带棋盘状凹槽的衬底接触面积Ss=175.03mm2,比同直径平衬底的接触面积(Ss=143.14mm2)增大22.3%。

曾制造焊有43片带凹槽衬底复合片的全面钻头用于生产试验,共进尺1158m,未发现金刚石层与衬底脱开的现象。说明该方法增大了金刚石层与衬底的连接强度。

图2-2 带棋盘形凹槽的衬底

同时,在实验室进行了复合片抗剪切试验。在抽样复合片上沿径向切出5块2mm×2mm×3.5mm的平行六面体试样,并在试验台上沿其边界线剪切。在标准复合片和凹槽衬底复合片试样接触面积投影都等于4mm2的条件下,得出的试验结果如表2-13所示。凹槽衬底复合片测得的平均剪切应力比标准复合片提高了30%,而且剪切应力与接触面积的增大成正比。

表2-13 复合片的剪切试验结果

表2-13中的测量值明显高于规定的钻头硬质合金焊接强度要求(cp=270~320MPa),所以这种带凹槽衬底的复合片在深孔作业中是安全的。

2.复合片的耐磨性测试方法及其实用性

金刚石-硬质合金复合片的耐磨性是一个非常重要的技术指标。钻探经验表明,PDC钻头的使用效果在很大程度上取决于复合片的耐磨性,但迄今为止国际上尚无统一的PDC耐磨性测试标准。

国内主要采用JS-71A型磨耗比测定仪,通过准确测定PDC和砂轮的失重量来确定PDC的磨耗比。这种方法的检测误差较大,主要来源于设备的系统误差、砂轮的硬度偏差和称量误差三个方面。其中,称量误差对磨耗比测试结果的影响最大且不易解决。因为PDC的硬度和耐磨性极高,试验过程中失重很小(多在10-5~10-4g范围内),而PDC表面常吸附空气中的尘埃,称量时表面吸附尘埃的重量就可能抵消其失重,使得测量失准,甚至因失重为负数而无法算出磨耗比。此外,对称量环境和砝码洁净度,对分析天平精度的严格要求,也使磨耗比检测试验的难度增大。

乌克兰国家科学院超硬材料研究所对PDC的耐磨性进行了系列研究。他们不仅通过与砂轮的磨耗比来了解PDC的耐磨性,更重视PDC复合片与岩石对磨时的磨损高度及磨损面形成的动态过程,通过岩石切削过程中PDC磨损高度、磨损面积与切削路径长度之间的关系来评价PDC的耐磨性。因为后者与钻探生产过程更接近,所以更能反映PDC的实际工作能力。

乌克兰超硬材料研究所曾在2500压机上,用表面镀覆保护层的金刚石原料,在7.7GPa压力、1600~2000℃条件下烧制新型大厚度复合片,其金刚石层厚度为1.7mm。为考察新型复合片的耐磨性,安排了传统复合片与新型复合片的切削(耐磨性)对比试验。试验在用卧式刨床改装的实验台上进行。用复合片去切削500mm×300mm×200mm的平行六面体石英砂岩岩块,岩块的单轴抗压强度极限为140MPa,研磨性为35mg(按前苏联研磨性测试方法)。

试验之前,先用旧复合片把岩块表面处理平整,使其平整度偏差不超过0.1mm。再把试验复合片固定在刨床的刀座上(角度可调)并夹紧,使复合片切削刃的切削前角βc=-10°±0.5°、切削后角αc=10°±0.5°(图2-3)。

切削规程为:切削速度0.55m/s,切削深度0.50mm,每个切削行程后岩块横向位移2.8mm。所有复合片样品都要在岩块上完成50±1m长的切削路径,用误差±0.01mm的显微镜测出磨损面中心部分的实际深度hi(即复合片已磨损掉的高度)及复合片切削刃上的磨损长度li,然后求出复合片磨损面的平均高度hcp作为复合片的初始磨损高度(图2-4)。

图2-3 复合片在刨床上固定示意图

图2-4 复合片磨损面形状示意图

复合片磨损面的平均高度可由下式求得

人造金刚石超硬材料在钻探中的应用

式中:n为复合片的数量;hi为复合片磨损面中心部分的实际磨损高度,mm;k为岩块的研磨性修正系数。

复合片的初磨试验结果示于表2-14。新型复合片的平均磨损高度为0.14mm,而传统复合片(不包括切削刃上有破碎缺口的复合片)为0.28mm。

表2-14 不同型号复合片在初磨阶段的磨损高度

为了测定复合片磨损的动态过程,用磨损高度最小的7号新型复合片和1号传统复合片再做试验。按上述方法在岩块上分别切削不同的路径长度(50±1m、100±1m、150±1m和200±1m),每次切削后,取下复合片并测定其金刚石层的磨损面积S作为复合片的磨耗性能(图2-4)。复合片磨损面积S(mm2)可按弓形面积公式计算,考虑到岩石的研磨性修正系数k,可写成

人造金刚石超硬材料在钻探中的应用

式中:hi为复合片磨损面中心部分的实际磨损高度,mm;li为复合片切削刃上的实际磨损长度,mm。对于试验用的石英砂岩,岩石研磨性修正系数k=1。

复合片磨损动态过程的测量结果与岩块切削路径的关系示于表2-15。

试验结果表明,金刚石层增厚的新型复合片在岩块切削路径为50±1m条件下的平均磨损高度比传统复合片减少了一半,即新型复合片的初始耐磨性比传统复合片提高了1倍。在切削路径长度200±1m条件下,形成磨损面的速度比传统复合片下降了73%。

表2-15 复合片磨损动态过程的试验结果

总之,乌克兰采用的按实验台复合片切削岩块的磨损高度和面积来评价耐磨性的方法,更接近于孔底岩石破碎过程。而且它测的正是钻头使用者最关心的PDC几何磨耗量,所以更能真实反映复合片在钻进中的寿命。

文章标签:理工学科产业信息化学物理学自然科学