超临界流体萃取夹带剂的表示方法
是指夹带剂占加料量的质量分数。往往夹带剂和萃取剂不是一种状态的物质,所以一般不用物质的量之比、体积比等表示夹带剂多少,而采用比较方便的质量分数表示。
下面是有关超临界流体萃取及夹带剂的一些介绍和一篇论文,仅供参考。
超临界流体萃取(Superitical Fluid Extraction,以下简称SFE)是一项发展很快、应用很广的实用性新技术。传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。超临界流体萃取是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。它具有提取率高、产品纯度好、流程简单、能耗低等优点。
什么是超临界:任何一种物质都存在三种相态----气相、液相、固相。三相呈平衡态共存的点叫三相点。液、气两相呈平衡状态的点叫临界点。在临界点时的温度和压力称为临界温度和临界压力。不同的物质其临界点所要求的压力和温度各不相同。超临界流体(SCF)是指在临界温度(Tc)和临界压力(Pv)以上的流体。高于临界温度和临界压力而接近临界点的状态称为超临界状态。
超临界萃取的原理:超临界流体萃取分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,超临界流体具有很好的流动性和渗透性,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以在超临界流体萃取过程是由萃取和分离组合而成的。
超临界流体(SCF)的选取:溶质在某溶剂中的溶解度与溶剂的密度呈正相关,SCF也与此类似。因此,通过改变压力和温度,改变SCF的密度,便能溶解许多不同类型的物质,达到选择性地提取各种类型化合物的目的。可作为SCF的物质很多,如二氧化碳、一氧化亚氮、六氟化硫、乙烷、甲醇、氨和水等。其中二氧化碳因其临界温度低(Tc=31.3℃),接近室温;临界压力小(Pv=7.15MPa),扩散系数为液体的100倍,因而具有惊人的溶解能力。且无色、无味、无毒、不易燃、化学惰性、低膨胀性、价廉、易制得高纯气体等特点,现在应用最为广泛。�
二氧化碳超临界萃取的溶解作用:在超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性、沸点和分子量密切相关,一般来说有以下规律:亲脂性、低沸点成分可在104KPa以下萃取,如挥发油、烃、酯、内酯、醚、 环氧化合物等,像天然植物和果实中的香气成分,如桉树脑、麝香草酚、酒花中的低沸点酯类等;化合物的极性基团( 如-OH、-COOH等)愈多,则愈难萃取。强极性物质如糖、氨基酸的萃取压力则要在4×104KPa以上;化合物的分子量愈大, 愈难萃取。分子量在200~400范围内的组分容易萃取,有些低分子量、易挥发成分甚至可直接用CO2液体提取;高分子量 物质(如蛋白质、树胶和蜡等)则很难萃取。超临界CO2萃取的特点 :
1、可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散,完整保留生物活性,而且能把高沸点,低挥发渡、 易热解的物质在其沸点温度以下萃取出来。2、由于全过程不用有机溶剂,因此萃取物绝无残留溶媒,同时也防止了提取过程对人体的毒害和对环境的污染,100%的纯天然,符合当今“绿色环保”、“回归自然”的高品位追求。3、控制工艺参数可以分离得到不同的产物,可用来萃取多种产品,而且原料中的重金属、无机物、尘土等都不会被CO2溶解带出。
4、蒸馏和萃取合二为一,可以同时完成蒸馏和萃取两个过程,尤其适用于分离难分离的物质,如有机混合物、同系物的分离精制等 。
5、能耗少;热水、冷水全都是闭路循环,无 废水、废渣排放。CO2也是闭路循环,仅在排料时带出少许,不会污染环境。由于能耗少、用人少、物料消耗少,所以运行费用非常低。
因此,CO2特别适合天然产物有效成分的提取。对于天然物料的萃取,其产品真正称得上是100%纯天然的“绿色产品”。
影响超临界萃取的主要因素:
1.密度:溶剂强度与SCF的密度有关。温度一定时,密度(压力)增加,可使溶剂强度增加, 溶质的溶解度增加。
2.夹带剂:适用于SFE的大多数溶剂是极性小的溶剂,这有利于选择性的提取,但限制了其对极性较大溶质的应用。因此可在这些SCF中加入少量夹带剂(如乙醇等)以改变溶剂的极性。加一定夹带剂的SFE-CO2可以创造一般溶剂达不到的萃取条件,大幅度提高收率。
3. 粒度:溶质从样品颗粒中的扩散,可用Fick第二定律加以描述。粒子的大小可影响萃取的收率。一般来说,粒度小有利于 SFE-CO2萃取。
4. 流体体积:提取物的分子结构与所需的SCF的体积有关。 增大流体的体积能提高回收率。
超临界流体萃取技术研究与应用进展
赵东胜,刘桂敏,吴兆亮
(河北工业大学化工学院,天津300130)
摘要:综述了超临界流体萃取的基本原理,以及提高超临界流体萃取效率的方法,包括加入夹带剂,利用
高压电场和超声波等.并对超临界流体萃取技术在生物化工,食品,医药和环保行业的最新应用情况作
了介绍.
关键词:超临界流体萃取;萃取效率;夹带剂;应用
中图分类号:TQ028.8文献标识码:A文章编号:1008-1267(2007)03-0010-03
超临界流体萃取技术(SFE)是利用超临界流体
作为萃取剂,从液体或固体中萃取了特定成分,以
达到分离目的产物的一种新型分离技术.超临界流
体萃取具有其它分离方法无可比拟的优点:易于和
产物分离,安全无毒,不造成环境污染,操作条件温
和不易破坏有效成分等.因此,超临界流体萃取技
术在生化,医药,日化,环保,石化及其它领域具有
广阔的应用前景.
1超临界流体萃取
1.1超临界流体
超临界流体(SCF)是指超过临界温度(TC)和临
界压力(PC)的非凝缩性的高密度流体[1].超临界流体
兼有气体和液体两者的特点,密度接近于液体,而
粘度和扩散系数却接近于气体,因此不仅具有与液
体溶剂相当的溶解能力,而且具有优良的传质性
能.
超临界流体的溶解能力除了与超临界流体和
待分离溶质二者性质相似性有关外,还与操作温度
和压力等条件有关.操作温度与超临界流体的临界
温度越接近,其溶解能力越强;无论操作压力多高,
超临界流体都不能液化,但流体的密度随压力的增
大而增大,其溶解能力也随之增强.
1.2超临界流体萃取的原理
超临界流体萃取技术就是利用上述超临界流
体的特殊性质,将其在萃取塔的高压下与待分离的
固体或液体混合物接触,调节系统的操作温度和压
力,萃取出所需组分;进入分离塔后,通过等压升
温,等温降压或吸附等方法,降低超临界流体的密
度,使该组分在超临界流体中的溶解度减小而从中
分离出来.
1.3提高萃取效率的方法
提高萃取效率的方法除了适当提高萃取压力,
选取合适萃取温度和增大超临界流体流量之外,还
可以采用加入适量的夹带剂,利用高压电场和超声
波等措施.
1.3.1加入夹带剂
加入适量合适的夹带剂可明显提高超临界流
体对被萃取组分的选择性和溶解度.张昆等[2]对夹
带剂甲醇的加入对超临界流体的溶解能力和萃取
选择性进行了研究,结果表明甲醇的加入可以显著
增加流体的溶解能力,且其增加的程度随甲醇的添
加量的增加而增加,这在一定程度上有利于极性物
质的提取,但是加入甲醇后会使流体的选择性降
低.因此在添加夹带剂时,应选择最优添加量.
表面活性剂也可以作为夹带剂提高超临界流
体萃取效率,提高的程度与其分子结构有关,分子
的脂溶性部分越大,其对超临界流体的萃取效率提
高越多[3].关于夹带剂的作用原理,8zlemCü>lü-
stündag等[4]研究认为是夹带剂的加入改变了溶剂
密度或内部分子间的相互作用所致.
在选择萃取剂时应注意以下几点:(1)在萃取
阶段,夹带剂与溶质的相互作用是首要的,即夹带
剂的加入能使溶质的溶解度较大幅度提高;(2)在
溶质再生(分离)阶段,夹带剂应易于与溶质分离;
(3)在分离涉及人体健康的产品时,如药品,食品和
收稿日期:2006-10-10
第21卷第3期
2007年5月
Vol.21No.3
May.2007
天津化工
TianjinChemicalIndustry
化妆品等,还需注意夹带剂的毒性问题.
1.3.2利用高压电场
高压脉冲电场可显著改善萃取溶质与膜脂等
成分的互溶速率及通过细胞壁物质的传质能力,从
而提高萃取效率.宁正祥等[5]用高压脉冲电场强化
超临界CO2萃取荔枝种仁精油,在300MPa以下时,
高压脉冲处理可明显改善超临界萃取效率;尤其是
在萃取率低于80%时,高压脉冲电场效果显著.
1.3.3利用超声波
在超临界流体萃取天然生物资源活性有效成
分的过程中,采用强化措施减少萃取的外扩散阻力
往往能取得很好的萃取效果.陈钧等[6]研制了带有
超声换能器的萃取器,利用超声强化超临界萃取中
的传质过程.方瑞斌等[7]用超声波强化超临界CO2
萃取紫杉醇.研究表明,如要完全萃取紫杉醇,未强
化超声超临界CO2的萃取时间是强化超声超临界
CO2的3倍.在对1.1%紫杉醇浸膏的萃取实验中,
强化超声的超临界CO2很快达到100%萃取,而未
强化超声的超临界萃取在3倍时间及用量相同条
件下只达到41%的萃取率,这充分显示了超临界萃
取与超声技术并用的优越性.Ai-junHu等[8]对超声
强化超临界流体萃取薏苡种子中的薏苡油和薏苡
仁酯的研究也表明,超声强化技术可以很大程度地
提高萃取效率.
此外,还有一些强化措施包括搅拌,增加流量
或采用移动床等,这些措施都是为了达到减少萃取
中外扩散阻力的目的.
2超临界流体萃取技术在工业上的
应用
2.1在生物化工中的应用
由超临界流体的特性可知,它特别适合用于热
敏性生物物质的分离和提取.目前超临界流体萃取
技术已应用于提取和精制混合油脂,如用EPA(二
十碳五烯酸)和DHA(二十二碳六烯酸)总含量为
60%的鱼油为原料,可得到纯度高达90%的EPA和
DHA[9].MarionLétisse等[10]对超临界流体萃取法富集
沙丁鱼中EPA和DHA的操作条件进行了优化.
袁成凌等[11]对超临界流体萃取微生物发酵法生
产的真菌油脂进行了研究,结果表明采用超临界
CO2富集微生物菌丝体中多不饱和脂肪酸的方法在
工艺上是可行的,但富集效果还有待进一步提高.
N.Vedaraman等[12]对超临界流体萃取牛脑中的胆固
醇进行了研究.
2.2在食品工业中的应用
超临界流体萃取技术在食品工业的应用已有
相当长的历史.用超临界流体萃取技术脱除咖啡豆
和茶叶中的咖啡因早已实现工业化生产.德国SKW
公司生产脱咖啡因茶,采用超临界流体萃取技术生
产能力达6000t/a.此外,SKW公司还将超临界流
体萃取技术应用于啤酒的生产,该公司超临界流体
萃取加工酒花的设备的生产能力为104t/a[13].
SeiedMahdiPourmortazavi等[14]研究了利用超临
界流体萃取植物中的精油,结果表明,与蒸馏法相
比此法具有明显优势:萃取时间短,成本低,产品更
纯净.P.Ambrosino等[15]对超临界流体萃取玉米中白
僵菌毒素进行了研究.
将超临界流体技术应用于食品领域,可使食品
的外观,风味和口感更好,因此超临界流体萃取技
术在食品工业具有广阔的应用前景.
2.3在医药行业中的应用
超临界流体萃取在医药行业的应用是非常广
泛的,尤其值得一提的是在中药有效成分的提取方
面,我国做了大量工作.目前,超临界流体萃取中药
有效成分已实现工业化生产,浙江康莱特公司将其
用于萃取抗癌中药,云南森菊公司拥有两套1000L
的萃取除虫菊成分的超临界流体萃取装置[16].
杜玉枝等[17]研究表明,CO2超临界萃取比石油
醚抽提优越,具有收率高,提取时间短及无溶剂残
留等优点,适合于藏成药安神丸的制备.Benliu等[18]
研究了利用超临界流体萃取黄连根中的黄连成分.
很多学者对超临界流体萃取中药有效成分进行了
研究,如川芎,白芷,当归和黄连等.
2.4在环境保护中的应用
超临界流体萃取技术在环境保护领域尤其是
处理被污染的固体物料和水体等方面具有广阔的
应用前景.
于恩平[19]利用超临界流体萃取方法处理多氯联
苯污染物的研究表明,用超临界流体萃取技术可以
清除固体物料中的有机毒性物质.高连存等[20]对炼
钢厂炼焦车间土壤进行了SFE研究,比较了温度和
压力对超临界流体萃取PAH(苯丙胺酸羟化酵素)
类化合物的影响,并且用GC-MS(气-质联用法)分
析结果和索式提取法做了对比,结果其回收率远远
第21卷第3期赵东胜等:超临界流体萃取技术研究与应用进展11
高于索式提取法的回收率.游静等[21]研究了用固相
吸附与超临界流体萃取相结合富集水中有机污染
物的方法,表明超临界流体萃取对水中极性较大的
有机化合物的处理是可行的.V.Librando等[22]对超
临界流体萃取海洋沉积物和土壤样本中的多环芳
烃污染物进行了研究,多环芳烃回收率达到90%以
上.Kong-HwaChiu等[23]也将超临界流体萃取技术
应用于治理环境中的有机污染物.
除了上面提到的几个方面的应用,超临界流体
萃取技术还在日化,陶瓷和仪器分析等领域有着重
要的应用.
3展望
超临界流体与气体和液体相比,可以说兼具后
两者的优点而又克服了它们的不足,而且超临界流
体萃取操作条件温和,所以超临界流体萃取技术相
比其它分离方法优势非常明显.目前,超临界流体
萃取技术在各领域应用过程中还有很多问题有待
解决,相信通过国内外专家的共同努力,该技术在
各领域的应用必将深入,而且会不断拓宽,其在工
业生产上的作用也将随之日益凸显
二氧化碳超临界流体萃取国内外发展及中药方面的应用
二氧化碳超临界流体萃取概述二氧化碳是一种很常见的气体,但是过多的二氧化碳会造成"温室效应",因此充分利用二氧化碳具有重要意义。传统的二氧化碳利用技术主要是用于生产干冰(灭火用)或作为食品添加剂等。目前国内外正在致力于发展一种新型的二氧化碳利用技术——CO2超临界萃取技术。运用该技术可生产高附加值的产品,可提取过去用化学方法无法提取的物质,且廉价、无毒、安全、高效;适用于化工、医药、食品等工业。
二氧化碳在温度高于临界温度Tc=31.26℃、压力高于临界压力Pc=7.2MPa的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力。用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景。
传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。超临界流体萃取是一种新型的分离技术, 它是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。它具有提取率高、产品纯度好、流程简单、能耗低等优点。CO2- SFE技术由于温度低, 且系统密闭, 可大量保存对热不稳定及易氧化的挥发性成分, 为中药挥发性成分的提取分离提供了目前最先进的方法。用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。这项技术除了用在化工、医药等行业外,还可用在烟草、香料、食品等方面。如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素及银杏叶、紫杉中的有价值成分。可见这项技术在未来具有广阔的发展前景。
一. 超临界流体萃取的基本原理
(一). 超临界流体定义
任何一种物质都存在三种相态-气相、液相、固相。三相成平衡态共存的点叫三相点。液、气两相成平衡状态的点叫临界点。在临界点时的温度和压力称为临界压力。不同的物质其临界点所要求的压力和温度各不相同。
超临界流体(Supercritical fluid,SCF)技术中的SCF是指温度和压力均高于临界点的流体,如二氧化碳、氨、乙烯、丙烷、丙烯、水等。高于临界温度和临界压力而接近临界点的状态称为超临界状态。处于超临界状态时,气液两相性质非常相近,以至无法分别,所以称之为SCF。
目前研究较多的超临界流体是二氧化碳,因其具有无毒、不燃烧、对大部分物质不反应、价廉等优点,最为常用。在超临界状态下,CO2流体兼有气液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和物质良好的溶解能力。其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内成比例,所以可通过控制温度和压力改变物质的溶解度。
(二). 超临界流体萃取的基本原理
超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。当气体处于超临界状态时, 成为性质介于液体和气体之间的单一相态, 具有和液体相近的密度, 粘度虽高于气体但明显低于液体, 扩散系数为液体的10~100倍; 因此对物料有较好的渗透性和较强的溶解能力, 能够将物料中某些成分提取出来。
在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和分子量大小的成分萃取出来。并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加, 极性增大, 利用程序升压可将不同极性的成分进行分步提取。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则自动完全或基本析出,从而达到分离提纯的目的,并将萃取分离两过程合为一体,这就是超临界流体萃取分离的基本原理。
超临界CO2的溶解能力
超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性、沸点和分子量密切相关,一般来说由一下规律:
1. 亲脂性、低沸点成分可在低压萃取(104Pa), 如挥发油、烃、酯等。
2. 化合物的极性基团越多,就越难萃取。
3. 化合物的分子量越高,越难萃取。
超临界CO2的特点
超临界CO2成为目前最常用的萃取剂,它具有以下特点:
1.CO2临界温度为31.1℃,临界压力为7.2MPa,临界条件容易达到。
2.CO2化学性质不活波,无色无味无毒,安全性好。
3.价格便宜,纯度高,容易获得。
因此,CO2特别适合天然产物有效成分的提取。
二、超临界流体萃取的特点
1.萃取和分离合二为一,当饱含溶解物的二氧化碳超临界流体流经分离器时,由于压力下降使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不存在物料的相变过程,不需回收溶剂, 操作方便;不仅萃取效率高,而且能耗较少,节约成本。
2.压力和温度都可以成为调节萃取过程的参数。临界点附近,温度压力的微小变化,都会引起CO2密度显著变化,从而引起待萃物的溶解度发生变化,可通过控制温度或压力的方法达到萃取目的。压力固定,改变温度可将物质分离;反之温度固定,降低压力使萃取物分离;因此工艺流程短、耗时少。对环境无污染,萃取流体可循环使用,真正实现生产过程绿色化。
3.萃取温度低, CO2的临界温度为31.265℃ ,临界压力为 7.18MPa, 可以有效地防止热敏性成分的氧化和逸散,完整保留生物活性,而且能把高沸点,低挥发渡、易热解的物质在其沸点温度以下萃取出来。
4. 临界CO2 流体常态下是气体, 无毒, 与萃取成分分离后, 完全没有溶剂的残留, 有效地避免了传统提取条件下溶剂毒性的残留。同时也防止了提取过程对人体的毒害和对环境的污染, 100%的纯天然。
5.超临界流体的极性可以改变, 一定温度条件下, 只要改变压力或加入适宜的夹带剂即可提取不同极性的物质, 可选择范围广。
三、超临界流体萃取技术的应用
(一).超临界流体技术在国内天然药物研制中的应用
目前,国内外采用CO2超临界萃取技术可利用的资源有:紫杉、黄芪、人参叶、大麻、香獐、青蒿草、银杏叶、川贝草、桉叶、玫瑰花、樟树叶、茉莉花、花椒、八角、桂花、生姜、大蒜、辣椒、桔柚皮、啤酒花、芒草、香茅草、鼠尾草、迷迭香、丁子香、豆蔻、沙棘、小麦、玉米、米糠、鱼、烟草、茶叶、煤、废油等。
在超临界流体技术中,超临界流体萃取技术(Supercritical fluid extraction,SFE)与天然药物现代化关系密切。SFE对非极性和中等极性成分的萃取,可克服传统的萃取方法中因回收溶剂而致样品损失和对环境的污染,尤其适用于对温热不稳定的挥发性化合物提取;对于极性偏大的化合物,可采用加入极性的夹带剂如乙醇、甲醉等,改变其萃取范围提高抽提率。
(二). 超临界CO2萃取技术在中药开发方面的优点
用超临界CO2萃取技术进行中药研究开发及产业化,和中药传统方法相比,具有许多独特的优点:
1、二氧化碳的临界温度在31.2℃ ,能够比较完好地保存中药有效成分不被破坏或发生次生化, 尤其适合于那些对热敏感性强、容易氧化分解的成分的提取。
2、流体的溶解能力与其密度的大小相关, 而温度、压力的微小变化会引起流体密度的大幅度变化, 从而影响其溶解能力。 所以可以通过调节操作压力、温度, 从而可减小杂质使中药有效成分高度富集,产品外观大为改善, 萃取效率高, 且无溶剂残留。
3、根据中医辨证论治理论, 中药复方中有效成分是彼此制约、协同发挥作用的。超临界二氧化碳萃取不是简单地纯化某一组分, 而是将有效成分进行选择性的分离, 更有利于中药复方优势的发挥。
4. 超临界CO2还可直接从单方或复方中药中提取不同部位或直接提取浸膏进行药理筛选,开发新药,大大提高新药筛选速度。同时,可以提取许多传统法提不出来的物质,且较易从中药中发现新成分,从而发现新的药理药性,开发新药。
5、二氧化碳无毒、无害、不易燃易爆、粘度低 ,表面张力低、沸点低, 不易造成环境污染。
6、通过直接与GC、IR、MS、LC等联用 ,客观地反映提取物中有效成分的浓度,实现中药提取与质量分析一体化。
7. 提取时间快、生产周期短。超临界CO2提取(动态)循环一开始,分离便开始进行。一般提取10分钟便有成分分离析出,2一4小时左右便可完全提取。同时,它不需浓缩等步骤,即使加入夹带剂,也可通过分离功能除去或只是简单浓缩。
8. 超临界CO2萃取,操作参数容易控制,因此,有效成分及产品质量稳定。
9. 经药理、临床证明,超临界CO2提取中药,不仅工艺上优越,质量稳定且标准容易控制,而且其药理、临床效果能够得到保证。
10. 超临界CO2萃取工艺,流程简单,操作方便,节省劳动力和大量有机溶剂,减小三废污染,这无疑为中药现代化提供了一种高新的提取、分离、制备及浓缩新方法。
另外,超临界流体结晶技术中的RESS过程、GAS过程等可制备粒径均匀的超细颗粒,从而可制备控释小丸等剂型,可用来制备中药新剂型。
超临界萃取技术除了在中药有效成分的提取方面有着明显的优势之外,它还在食品、化工和生物工程方面有着广泛的应用。
(三).超临界流体技术在其他方面的应用
1. 在食品方面的应用
目前已经可以用超临界二氧化碳从葵花籽、红花籽、花生、小麦胚芽、可可豆中提取油脂,这种方法比传统的压榨法的回收率高,而且不存在溶剂法的溶剂分离问题。
2. 在医药保健品方面的应用
在抗生素药品生产中,传统方法常使用丙酮、甲醇等有机溶剂,但要将溶剂完全除去,又不是要变质非常困难。若采用SCFE法则完全可符合要求。
另外,用SCFE法从银杏叶中提取的银杏黄酮,从鱼的内脏,骨头等提取的多烯不饱和脂肪酸(DHA,EPA),从沙棘籽提取的沙棘油,从蛋黄中提取的卵磷脂等对心脑血管疾病具有独特的疗效
3. 天然香精香料的提取
用SCFE法萃取香料不仅可以有效地提取芳香组分,而且还可以提高产品纯度,能保持其天然香味,如从桂花、茉莉花、菊花、梅花、米兰花、玫瑰花中提取花香精,从胡椒、肉桂、薄荷提取香辛料,从芹菜籽、生姜,莞荽籽、茴香、砂仁、八角、孜然等原料中提取精油,不仅可以用作调味香料,而且一些精油还具有较高的药用价值。 啤酒花是啤酒酿造中不可缺少的添加物,具有独特的香气、清爽度和苦味。传统方法生产的啤酒花浸膏不含或仅含少量的香精油,破坏了啤酒的风味,而且残存的有机溶剂对人体有害。超临界萃取技术为酒花浸膏的生产开辟了广阔的前景。
4. 在化工方面的应用
在美国超临界技术还用来制备液体燃料。以甲苯为萃取剂,在Pc=100atm, Tc=400-440℃条件下进行萃取,在SCF溶剂分子的扩散作用下,促进煤有机质发生深度的热分解,能使三分之一的有机质转化为液体产物。此外,从煤炭中还可以萃取硫等化工产品。
美国最近研制成功用超临界二氧化碳既作反应剂又作萃取剂的新型乙酸制造工艺。俄罗斯、德国还把SCFE法用于油料脱沥青技术。
此外,朝临界萃取还可以用于提取茶叶中的茶多酚;提取银杏黄酮、内酯;提取桂花精和米糖油。
四、超临界流体萃取技术的展望
中药为我国传统医药,用中药防病治病在我国具有悠久的历史。由于化学药品的毒副作用逐渐被人们所认识及合成一个新药又需巨大的投资,西医西药对威胁人类健康的常见病、疑难病的治疗药物还远远不能满足临床的需要,因此,全世界范围内掀起了中医中药热。
中药在我国作为天然药物不但应用历史悠久。产量又居世界第一,然而,就目前世界天药物的贸易额看.我国仅占18%左右。究其原因,主要是产业现代化工程技术水平不高,制备工艺和剂型现代化水平还很落后等因素所制约。为此,要改变现状必需从提取分离工艺、制剂工艺现代化。质量控制标准化、规范化上下手。面对科学技术,特别是医药工业的迅猛发展,国际间医药学术交流活动的日益频繁以及药品市场竞争越来越激烈,实现中药现代化,与国际接轨,已成为中医药工作者的共识。
在现代社会,中药生产中的大桶煮提、大锅蒸熬及匾、勺、缸类生产器具当家的状况大为改善,进而出现不锈钢多功能提取罐、外循环蒸发、多效蒸发器,流化干燥器等设备,中成药的剂型也有较大的发展,由丸、散、膏、丹剂为主发展成为具有颗粒剂、片剂、胶囊剂、口服液及少量粉针等剂型。然而,我国现阶段创制的中成药还难以在国外注册、合法销售与使用。从目前全世界天然药物的贸易额来看,中国仅占l%左右,与天然药物主产国的地位极不相称。其原因主要是产业现代工程技术水平不高,制备工艺和剂型现代化方面还很落后;生产过程的许多方面缺乏科学的、严格的工艺操作参数,不仅导致了消耗高、效率低,而且还出现有效成分损失、疗效不稳定、剂量大服用不方便、产品外观颜色差、内在质量不稳定;同时还出现缺少系统的量化指标,大多数产品缺乏疗效基本一致的内在质量标准;许多复方制剂还难以搞清楚其作用的物质基础。"丸、散、膏、丹,神仙难辨" 的状况尚未根本改变。要改变这种现状,让西方医药界接受中药,增强中药在国际市场上的竞争地位,主要途径是,以中药理论为指导,采用先进的技术,实现中药现代化。中药产品现代化的重点可简单地用8个字来描述,即"有效、量小、安全、可控"。实际上,它涉及范围十分广泛,要解决的问题比较复杂,但首先最关键的问题就是要提取分离工艺、制剂工艺现代化,质量控制标准化、规范化。为此,许多医药专家多次提出要采用超临界流体技术、膜分离技术、冷冻干燥技术、微波辐射诱导萃取技术、缓控释制剂技术、各种先进的色谱、光谱分析等先进技术,进行中药研究开发及产业化。
中药生产现代化和质量标准科学化是发展中药,走向世界的关键.在中药研制和开发中,必须遵循“三效“(速效、高效、长效),"三小"(剂量小、副作用小、毒性小),"五方便"(生产、运输、储藏、携带、使用方便)为目的之原则.为此,必须选用一些现代高新工艺技术.近年发展的SFE技术用于提取天然药物中的有效成分,特别适合对湿热不稳定的物质,又无残留溶剂、无回收溶剂造成环境污染的缺陷,而且提取速度快、可缩短生产周期。无疑是既可提高收率及产品纯度、又可降低成本的一种高新技术可推广使用.但是因为本法采取的萃取剂均为脂溶性,所以对极性偏大或分子量偏大(一般大于500时)的有效成分提取收率较差,今后必须在选用合适夹带剂加入方面下功夫.当然,国外已有报道应用全氟聚醚碳酸铵可使SFE法扩展到水溶性体系,使难以提取的强极性化合物如蛋白等成分由SFE法萃取.近年来SFE技术又与色谱、质谱、高压液相色谱等高新分析仪器联用,成为一种有效的分离、分析手段,能高效、快速地进行药物成分的分析。使一些中药制剂能借此制订出能指导生产操作和反映产品内在质量均一性、有效性、稳定性、重现性的可控指标,实施质量标推科学化.
目前 SFE主要用在天然药物中有效成分的萃取,而且多用于单个药物中纯天然成分提取.我们认为对我国应用历 史悠久的古方中一些中成药复方制剂,以及许多中药中具很强药理活性,参与生命功能活动的多糖成分.也应该进行采用SFE提取工艺的研究与新药开发,这也是使中药与国际接轨,实现中药现代化的必经之路。
在超临界流体技术中,研究及开发应用较多的是超临界流体萃取技术,由于其自身的特点,国内外已广泛应用于食品、香料等领域。我国有丰富的自然资源,超临界萃取技术有极大的推广价值。有些交通不发达的山区,特产资源十分丰富,尤其盛产中草药材。处理这些药材,要用相当大的装置,且运输不便,如能在这些山区建立CO2超临界萃取设备,可用以提取中药中最为有用的精华部分,这不仅减少了大量的运输成本,而且大大增强了重要的附加值。
而目前的中药领域,国外或国内大多数从事SFE技术的单位研究开发应用虽有报道,但缺乏系统性,大多只停留在中药有效成分或中间原料提取方面,这仅仅是用于中药的一个方面。中药的研究与开发具有特殊性,即必须具有药理临床效果,因此,SFE技术用于中药必须结合药理临床研究。只有工艺上优越,药理临床效果又保证或更好,SFE技术在该领域的生命力或潜力才能真正体现。
茶叶生物碱的提取方法
咖啡碱是茶叶生物碱的主要组成部分,由于在食品、医药行业的广泛应用,其提取方法研究比较多。从茶叶中提取咖啡碱的方法主要有溶剂萃取法、升华法、离子沉淀法、柱层析法、超声波提取法和超临界萃取法等 。超临界 CO2 萃取法
超临界流体萃取技术( Supercritical Fluid Extraction,SFE),是近 20 年发展起来的分离方法,具有对有机物溶解度大、传质速率高、操作条件温和等优点,由于 CO2的临界值低,安全且方便,用超临界 CO2流体作为萃取溶剂更显优势。超临界CO2萃取法在茶叶深加工中的应用,始于脱除成品茶中的咖啡碱。Vitzthum 和 Hubert 采用超临界 CO2处理茶叶,使茶叶中咖啡碱含量由原来的 3%降低到0.07%。用超临界萃取技术分离提取茶叶中的咖啡碱,再用CH2Cl2萃取分离,得到纯度为 95.16%的咖啡碱,萃取率和得率分别为 16.85%、0.55% 。超临界 CO2萃取工艺选择性强、效率高、产品质量好、得率高,但生产成本较高,难以为生产厂家所接受,尚处于实验室研究阶段,可以通过综合提取茶叶同时获得茶多酚和咖啡碱两种药用材料来降低成本。
吸附法
常用吸附剂有氧化铝、硅藻土、活性碳或 XAD2 大孔吸附树脂等。由于存在茶多酚污染树脂导致再生较困难等未能解决的问题,离子交换树脂分离茶叶中的咖啡碱至今在实际生产中未能发挥作用。为了使洗脱剂能浸润到树脂内部并置换出咖啡碱,常采用与水混溶的氨-乙醇或 NaOH-乙醇等洗脱剂洗脱部分水溶性杂质,还需要用有机溶剂萃取纯化,工艺繁琐重复。日本学者用 20 mL 乌龙茶汁通过填充有 30 g硅藻土的吸附柱,然后用 150 mL 二氯甲烷洗脱,可将柱中99.8%的咖啡因洗脱。活性碳常被用作咖啡碱的捕集剂使用,在使用 CO2 气提法脱除植物中的咖啡因时,常被用作吸附 CO2 中咖啡因的吸附剂。
升华法
利用咖啡碱可在 235℃~238℃大量升华的性质设计出各种升华装置来提取咖啡碱。陈友仁等设计了新的咖啡因提取装置,该装置是一种直接从茶叶中升华制备咖啡碱的方法。升华罐与冷凝罐直接连接,升华罐底部用远红外加热炉加热,冷却分离罐由分离罐体、收集网、环形集水槽、水冷却夹套进出水管、烟道和搅拌驱轴组成。该装置不仅可以完成从茶中提取咖啡因的加热升华,而且能直接将升华物冷却,分离出咖啡因结晶,提取时间短,产量高,纯度好。该装置提高了咖啡因的提取率,避免了污染。Ramaswamy 采用静电沉淀法回收粗咖啡碱经浓缩、结晶纯化得纯咖啡因。毛小源对结晶箱进行了改进。利用升华法可以得到药用级的咖啡碱,但由于升华的咖啡碱定向定位富集困难,收集时损耗较大,提取率也比较低,在生产中已渐渐被淘汰。
溶剂法
在咖啡碱的生产中应用比较普遍,产品得率较之升华法来得高。这种方法常在茶多酚的工业生产工艺中配合使用。目前国内使用最广泛的方法是有机溶剂萃取法。其方法主要有两种:第一种是先用热水抽体茶叶,再用氯仿等有机溶剂萃取,浓缩有机相,使咖啡碱得以纯化结晶。成锦遥等将茶叶放入浸提塔中加水蒸煮 2 h,通过沉淀池沉淀过滤、离心分离出提取液,进入清液池,蒸发浓缩至 40%~60%,并按 3∶1~6∶1 的比例加入氯仿或二氯甲烷,混合均匀后送入萃取塔中萃取,萃取液在 0℃~4℃下静置 30 min~60 min,然后蒸馏、回收溶剂,罐中粗咖啡因取出后置≤100℃下恒温 60 min~70 min,最后放入升华罐中升华,即得纯咖啡因。第二种是加石灰水和碱使茶叶变性,然后用氯仿等卤代碳氢化合物提取,蒸去溶剂后用热水抽提、纯化、结晶获得产品。上述这两种方法具有简便易操作、成本低廉、产量高等特点。但是由于二氯甲烷或三氯甲烷的使用与残留而影响产品质量,同时如果用 MgO 或 CaO 等碱水浸润茶叶,有机溶剂不易进去,需要多次重复提取,不仅有机溶剂消耗大,效率也比较低。
微波辐射法
张燕瑜、林曼斌等利用微波辐射法提取茶叶中的咖啡碱,在 250ml 锥形瓶中放入粉末状干茶样 10.0g,加入一定量、一定配比的 98%乙醇和水的混合液,置于火力级设为“高”的微波炉中,辐射至一定时间后取出抽滤,滤液用水浴蒸除乙醇,残余液倒入蒸发皿加生石灰搅拌成浆状,在蒸汽浴上蒸干成粉状,分 3 次装入干燥且洁净的坩埚中用大火加热,冷却后进行提取[5]。该法操作简便、节能省时、提取率高、产品纯度高。
萃取升华综合法
萃取法和升华法都存在着有待进一步提高和完善的环节,因此,煤炭科学合肥研究所吸取了二者的长处,将二者有机结合,开发了一种新工艺,该工艺重要流程为:茶叶→预处理→升华→杂质处理→升华→无水咖啡因。
其他制备方法
张效林等选用 PA 树脂和 XDA 大孔吸附树脂二级吸附法生产茶多酚和咖啡碱,该法避免使用有毒溶剂,无外添加物质,工艺简单易操作、耗能低、污染少、选择性高等特点。周志等以中、低档绿茶为原料,采用微波水提结合乙酸乙酯萃取应用于茶叶咖啡碱的提取,该工艺短时、高效、无毒、产品纯度高。
二氧化碳超临界萃取能萃取茶叶哪些成分
国内已经可以利用超临界二氧化碳来萃取茶多酚,但是该提取法存在着一定的技术障碍,主要表现为茶多酚提取率低,可能是由于茶多酚在临界二氧化碳中溶解率低,但是纯度高,有发展前景。但是用此法来萃取咖啡碱,更好,尤其是在乙醇作为携带剂的情况下,能够萃取绿茶中95%的咖啡碱。